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Abstract
The Abstraction and Reasoning Corpus (ARC)[3] is a
benchmark to test the ability of artificial systems to
adapt, learn on the fly, and quickly acquire new skills
in a human-like way. The benchmark has proven chal-
lenging for even the most advanced language models
to solve. In this paper, I explain a novel approach to
solving ARC puzzles that uses (1) small (67M param)
Transformer models trained exclusively on ARC puz-
zles, (2) test-time training (TTT), and (3) refinement.
I demonstrate that a system combining these three
strategies is able to solve 41% of puzzles from a sub-
set of the public ARC evaluation dataset that fit the
model dimensions. This result is notable because it
is achieved with a very small model and without the
use of search, language models, or program synthesis.

Code is available at: https://github.com/
pfletcherhill/mini-arc

1 Introduction

1.1 The Abstraction and Reasoning
Corpus (ARC)

The Abstraction and Reasoning Corpus (ARC)[3] is
a benchmark published in 2019 by Francois Chol-
let which aims to test models’ ability to reason and
efficiently learn new patterns. The benchmark is com-
posed of 2D puzzles that are relatively simple for
humans to solve but which have stumped even the
most advanced LLMs.

ARC puzzles are structured as a list of input/output
grids, each of which demonstrate some sort of transfor-
mation. The goal is to infer the transformation from
the list of input/output grids and then apply the same
transformation to a new input grid. The benchmark is
very diverse in terms of the transformations, including
concepts like counting, gravity, rotation, and more.

The ARC Prize[2] is a competition to build an arti-
ficial system that solves not-seen-before ARC puzzles.
There are 800 publicly available ARC puzzles (400

easy ones and 400 hard ones), but the competition
evaluates each submission against 100 secret puzzles
that may or may not share concepts with the publicly
available puzzles.

Many of the most successful systems thus far have
made use of fine-tuned LLMs and a combination of
test-time training and program synthesis to try to
solve puzzles. Two teams recently beat 50% on the
2024 ARC Prize leaderboard using similar approaches.

1.2 Motivation

While considerable progress is being made with the
approaches described above, I wanted to see if similar
performance could be achieved without using language
models at all. Intuitively, I do not "think" in terms
of language when solving ARC puzzles myself, so I
wondered whether an artificial system could reason
and identify patterns without language too.

2 Related Work

2.1 Test-Time Training (TTT)

Test-time training (TTT) is a meta learning strategy
being used by multiple groups to quickly adapt pre-
trained models for new puzzles when they see them.
MindsAI, the group currently holding the top spot on
the 2024 ARC Prize leaderboard, has written about
test-time training[4] and their use of it.

Additionally, a recent paper[1] demonstrates that
test-time training can improve performance by a factor
of 6 when using a fine-tuned 8B parameter LLM to
solve ARC puzzles. This group achieved 53% accuracy
on the ARC public evaluation dataset.

2.2 2D Transformer Models

Li et al.[11] tried using Vision Transformer models
to solve ARC puzzles. The group showed that a
vanilla Vision Transformer failed to solve most ARC
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Figure 1: Mini-ARC solves ARC puzzles using customized small Transformer models. These are real predicted
outputs for two ARC puzzles as they progress through the Transformer encoder layers.

puzzles but that a custom positional encoding scheme
improved performance.

2.3 Synthetic ARC Puzzle Generation

Efficient generation of new ARC puzzle for training
purposes has been critical. It’s very tricky to come
up with new puzzles and generate new puzzles that
are seeded from existing public ones.

Michael Hodel published RE-ARC[7], which in-
cludes a domain-specific language (DSL) for ARC
puzzles as well as generator and solver programs using
that DSL for the 400 ARC Public Training Set puzzles.
RE-ARC is an extremely helpful resource for anyone
training models to solve ARC puzzles.

Recently, another group published BARC[10],
which includes further Python programs to gener-
ate more ARC puzzles. The BARC Heavy dataset [9]
includes 200k puzzles, each with many example input
and output grids to construct tasks from.

3 Mini-ARC

3.1 Model Architecture

At the core of Mini-ARC is a specialized Transformer
model designed for processing ARC puzzles. The
model consists of:

1. An embedding layer to convert discrete colors to
vectors

2. A custom positional encoding scheme that repre-
sents a cell’s 2-D position as well as it’s position
in the larger context

3. A stack of Transformer self-attention encoder
layers

4. A final layer to project the output back to discrete
colors

I trained two models for evaluation: Mini-ARC-12
and Mini-ARC-v12. See Table 1 for the specifica-
tions and hyperparameters used for each model. The
only difference between the two is that Mini-ARC-v12
uses a modified embedding scheme which compresses
each 12x12 grid into a 6x6 grid using 2x2 patches[5],
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Figure 2: Here is an illustration of how ARC Puzzle cfb2ce5a is encoded into a sequence along with a
placeholder output grid and passed through the Mini-ARC model.

Table 1: Model Hyperparameters
Specification Mini-ARC-12 Mini-ARC-v12

Max grid dim. 12x12 12x12
Total parameters 67,320,715 67,343,755
Sequence len. 1,440 468
Embedding dim. 512 512
FFN dim. 3,072 3,072
Encoder layers 16 16
Attention heads 16 16

which is a common technique for Vision Transform-
ers—thus the "v" in the model name. Therefore,
the input sequence for Mini-ARC-v12 is considerably
shorter than the un-patched input sequence for Mini-
ARC-12.

3.1.1 Input Representation

In order to maximize in-context learning, an entire
puzzle, including all training input and output grids
as well as the test input grid, is included in the input.

While ARC puzzles have many context pairs and
grids can be from 1x1 to 30x30, I chose to limit the
sequence length for the sake of more efficient experi-
mentation. Mini-ARC-12 and Mini-ARC-v12 expect
the input to be nine 12x12 grids: four input and
output train grids and one test input grid.

All grids are padded to 12x12 using a padding token
(0) and all missing training pairs are padded with
12x12 grids as well. Since the padding token is 0, the
color classes are all bumped up by one before being
encoded.

The input tokens are flattened to make an input
sequence of all nine grids and a 12x12 output grid is
added to the end. By default the placeholder output
grid is a learned parameter, but the models also accept
a custom starting output grid as an argument to the
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forward pass. See Figure 2 for an illustration of how
the full sequence is constructed and Table 1 for the
specific sequence lengths for each model.

3.1.2 Embedding and Positional Encoding

The sequence is embedded into 512-dimensional space
using a learned embedding parameter. Each token is
augmented with a positional encoding that includes:
(1) its grid row, (2) its grid column, (3) whether its
part of an input or output grid, and (4) which grid
pair its a part of. The model has a learned embedding
for each of those four attributes.

3.1.3 Attention and Masking

The full embedded sequence is passed through 16
Transformer encoder layers with self-attention mecha-
nisms. A padding mask prevents padding tokens from
attending to other tokens. And a causal attention
mask prevents the input sequence from attending to
the output sequence. Input tokens can attend to any
tokens in the input sequence, and output tokens can
attend to all tokens—both the input and output.

3.2 Training Data and Synthetic Data
Generation

The ARC benchmark includes two datasets: the Pub-
lic Training Set with 400 easy puzzles and the Public
Evaluation Set with 400 hard puzzles. While the
point of the ARC Prize is to focus on generalization,
I needed more data in order to train the Mini-ARC
models.

I ended up with a training dataset of 830,648 puzzles
and an evaluation dataset of 167,880 puzzles. All of
these puzzles have 4 or fewer training pairs and do not
include any grids larger than 12x12. While the ARC
public datasets differ in complexity, the training and
evaluation datasets I used for training are the same
difficulty and complexity. The evaluation dataset is
just a random subset of the total dataset that was
kept out of training.

The dataset is a combination of three sources:

1. 290,025 RE-ARC puzzles, which represent the
400 patterns and transformations from the ARC
Public Training Set

2. 524,506 BARC puzzles, which represent 200,000
patterns and transformations from the BARC
Heavy dataset

3. 16,117 ARC-HTML puzzles, which represent 30
patterns and transformations from the ARC Pub-
lic Evaluation Set

3.2.1 ARC-HTML

In addition to the RE-ARC and BARC puzzles, I
wanted to generate puzzles similar in complexity to
the ARC Evaluation Set. I initially tried writing
Python functions for each puzzle in the ARC Public
Evaluation Set, but that proved extremely tedious.
I then wrote out descriptions of some of the trans-
formations represented in the puzzles in English and
tried prompting LLMs to write Python programs for
me. I even provided the RE-ARC DSL to LLMs and
tried having them use that. None of the Python-based
approaches proved successful or efficient. Either the
LLM-generated programs required heavy edits or they
didn’t work at all.

Eventually, I tried prompting LLMs to generate
HTML documents for each puzzle. I thought that the
transformations and patterns included in the puzzles
might be easier for LLMs to write with HTML, CSS,
and Javascript, because they’re often projections of 3D
objects in a 2D space, similar to HTML pages. While
it was still burdensome to write English descriptions
of the puzzles, I wrote 40 descriptions and ChatGPT
and Claude wrote extensive HTML documents for
each one. I prompted them with a sample HTML
document including containers for the input/output
grids. Then I wrote a script to load each HTML
document, take an image of the webpage, and parse it
pixel-by-pixel to turn each into ARC puzzles. Specific
prompts ensured that the HTML documents kept the
grids at certain sizes so that I could scrape them
consistently.

From the 40 HTML documents, I generated 360,000
puzzles. Though only 16,117 of those from 30 HTML
documents fit inside the 12x12 grid limitation I im-
posed for training Mini-ARC. The 40 HTML docu-
ments and prompts are available on Github.

3.3 Training

Training of the Mini-ARC models was done using
supervised learning on 4-8 A100 GPUs on Modal[8]
over multiple days. Both Mini-ARC-12 and Mini-
ARC-v12 were trained for at least 150,000 steps with
effective batch sizes ranging from 32 to 192.

3.4 Test-Time Training

In addition to the pre-trained models, I also set up
a test-time training scheme where models could be
fine-tuned for each individual puzzle as they solve it.
For each puzzle, I created a new dataset by sampling
pairs from the context input and output grid pairs in
the puzzle. So a puzzle with 4 context pairs would
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Figure 3: ARC-HTML is a prompting strategy for getting LLMs to generate HTML documents where each
page load yields a new ARC puzzle.

generate 48 fine-tuning puzzles by taking all the per-
mutations of every combination of at least 3 puzzles
from the group.

At test time, I train a copy of the pre-trained model
on the puzzle-specific dataset using supervised learn-
ing. Training proceeds until either an accuracy cut-off
is achieved (typically 99%) or a number of steps is
exceeded. The batch size, learning rate, number of
steps, and accuracy cut-off are all tunable arguments.

3.5 Refinement

The Mini-ARC models were trained with two settings:
predicting from scratch and refinement. The forward
pass of the models accepts an optional output argu-
ment, which if present will be used as the starting
point for the output grid. If no output argument is
passed, the output grid is set from a learned parameter
on the model.

During training, I set 25% of the training steps
to focus on refinement. In those steps, I generated
a partial solution to the puzzle and fed it into the
model along with the input. Partial solutions were
created by adding varying amounts of noise to the real
outputs. The aim was to be able to refine a puzzle
solution over multiple passes.

4 Results
I evaluated each Mini-ARC model and strategy against
a representative subset of the public ARC Evaluation
Dataset. This version of Mini-ARC models is limited
to puzzles with grids up to 12x12 in size and up to 4
pairs of training pairs. Therefore, I tested against a
subset of the public evaluation dataset that fit that
criteria, which was 114 puzzles of the 400 available.
See Appendix A for a list of all 114 puzzle IDs.

I used three metrics to evaluate each model:

1. Score - how many of the puzzles did the model
predict correctly?

2. Accuracy - how many pixels did the model predict
correctly?

3. Closeness - how many of the puzzles did the model
predict within 95% accuracy?

Each model was evaluated using three strategies:

1. Zero-shot prediction

2. TTT prediction - TTT for up to 15 epochs with
accuracy cut-off of 99.5%

3. TTT + Refined prediction - TTT for up to 15
epochs, then 2 rounds of refinement

As you can see in Table 2, ARC-Mini-12 performs
significantly better than ARC-Mini-v12 in all cate-
gories. 90%+ accuracy was achieved by all strategies,
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Table 2: Mini-ARC Performance
Metric Mini-ARC-12 Mini-ARC-v12

Zero-shot Score 26 (22.8%) 11 (9.6%)
Zero-shot Accuracy 93.0% 90.7%
Zero-shot Closeness 56 (49.1%) 44 (38.6%)

TTT Score 43 (37.7%) 17 (14.9%)
TTT Accuracy 95.0% 93.1%
TTT Closeness 78 (68.4%) 65 (57.0%)

TTT + Refined Score 47 (41.2%) 20 (17.5%)
TTT + Refined Accuracy 95.3% 93.3%
TTT + Refined Closeness 80 (70.2%) 64 (56.1%)

which is impressive, especially for the zero-shot predic-
tions. Though keep in mind that accuracy calculations
include padding tokens in the output grids. Assuming
padding tokens are easier to predict than other tokens,
this accuracy calculation favors puzzles with small out-
put grids. The combination of test-time training and
refinement achieves the best result, solving 41.2% of
puzzles in the dataset.

5 Discussion

5.1 Data Leakage

Because the ARC-HTML portion of the Mini-ARC
training dataset was derived from puzzles in the ARC
Public Evaluation Set, there is a concern about data
leakage when benchmarking performance against the
ARC Public Evaluation Set. However, the overlap
between the puzzles used to generate the ARC-HTML
dataset and the puzzles in the 114 limited evaluation
dataset is only 10 puzzles. I did not consider grid sizes
when picking puzzles for the ARC-HTML dataset, and
many of them exceed the 12x12 grid constraint for
training Mini-ARC-12 and Mini-ARC-v12.

Across the 10 puzzles that do overlap, the Mini-ARC
performance is similar to the rest of the evaluation
dataset, solving a maximum of 4 of the 10 puzzles in
any of the performance metrics. See a full report of
the results on these 10 puzzles in Appendix C.

5.2 Limitations

One limitation of a system like Mini-ARC compared
to strategies that use LLMs is that Mini-ARC has to
handle both reasoning and program execution, while
LLMs are able to write code to test their programs
and offload computation to a computer. The combi-
nation of these modes in Mini-ARC is similar to hu-

mans—we are able to execute the transformations we
contemplate mentally without having to write Python
programs to try them—but it is still a disadvantage
relative to other approaches.

5.3 Future Work and Other Ideas

5.3.1 Scale Up Models to Larger Grids

The current Mini-ARC models are constrained by
their 12x12 grid size requirement. In the future, I
would like to train larger models with the same archi-
tecture to evaluate against larger ARC puzzles. While
Mini-ARC-12 performed better than Mini-ARC-v12
at this size, using Vision Transformer-style patch em-
bedding will be important as we scale up to keep the
sequence length reasonable. Without using patches,
the sequence length for 30x30 puzzles would be 9,000
tokens, which would require a much larger model. For
comparison, the current context window for OpenAI’s
GPT-3.5 is 16,385 tokens.

5.3.2 ARC-HTML Experimentation

The ARC-HTML approach demonstrated that ad-
vanced LLMs are capable of formalizing ARC puzzles
in HTML, CSS, and Javascript documents. In ad-
dition to prompting LLMs to follow instructions for
specific puzzles, we should try prompting them to
generate HTML documents for new puzzles entirely.
This strategy is similar to BARC[10], which cleverly
prompted LLMs to generate new puzzles from seed
programs, where the seed programs represented a
diverse set of grid transformations. But since ARC-
HTML puzzles are HTML documents, in order to get
an even more diverse dataset, we could prompt LLMs
to modify ARC-HTML puzzles using all possible CSS
transformations.
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5.3.3 Meta Learning

Since test-time training has proven to be effective,
future work should be done to evaluate meta learning
strategies[6]. Currently, training and test-time train-
ing occur independently, but theoretically we should
be trying to minimize the loss after test-time training
rather than zero-shot prediction, which may result in
a different state for the model parameters.

6 Conclusion
This paper introduces Mini-ARC, a collection of small
Transformer models trained on ARC puzzles as well
as test-time training (TTT) and refinement strate-
gies for solving ARC puzzles. Using Mini-ARC-12,
I show a best performance of 41% across a subset
of the ARC evaluation dataset, which is filtered to
puzzles that fit the Mini-ARC grid size constraints.
This result is notable because of the relatively small
size of the models (67M params) and because it was
achieved without the use of language models, search,
or program synthesis.
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A Mini-ARC Evaluation
Dataset

Here are the 114 puzzles from the public ARC Evalua-
tion Set that fit within the Mini-ARC size constraints:
3b4c2228, fc754716, 5d2a5c43, e5790162, 4e469f39,
6ea4a07e, bf32578f, ef26cbf6, ca8de6ea, 5783df64,
9c56f360, d017b73f, 626c0bcc, c35c1b4c, c48954c1,
b15fca0b, 4acc7107, ac605cbb, f0afb749, c8b7cc0f,
da2b0fe3, ae58858e, e99362f0, 67c52801, 66e6c45b,
48131b3c, 2685904e, 90347967, a406ac07, 60c09cac,
332efdb3, b1fc8b8e, 506d28a5, dc2aa30b, 8fbca751,
17cae0c1, e633a9e5, ed74f2f2, ecaa0ec1, 68b67ca3,
f45f5ca7, cfb2ce5a, 7ee1c6ea, 48f8583b, aa300dc3,
9f27f097, 4cd1b7b2, 31adaf00, e345f17b, 2072aba6,
9c1e755f, f3e62deb, c7d4e6ad, a8610ef7, 84db8fc4,
31d5ba1a, 7953d61e, bbb1b8b6, 0692e18c, 782b5218,
0c786b71, 575b1a71, 2c737e39, 94414823, 137f0df0,
6f473927, 00576224, a59b95c0, b942fd60, 4852f2fa,
6ad5bdfd, d19f7514, 8b28cd80, 27f8ce4f, ea9794b1,
73182012, 917bccba, d2acf2cb, 8e2edd66, e5c44e8f,
ce039d91, 15696249, f3cdc58f, 73c3b0d8, 34b99a2b,
b0722778, e7dd8335, 1acc24af, e133d23d, 69889d6e,
9110e3c5, 12eac192, c074846d, 64a7c07e, 8ba14f53,
e872b94a, e6de6e8f, 85fa5666, 8597cfd7, 7e02026e,
32e9702f, 59341089, 03560426, 3979b1a8, aa18de87,
af24b4cc, e69241bd, be03b35f, 27a77e38, 0becf7df,
3d31c5b3, 7c8af763, 6df30ad6, ed98d772.
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B ARC-HTML Prompt

Here is an example prompt used for generating HTML
files from English descriptions of ARC puzzles via
LLMs:

Update this HTML document using the
instructions below. Think step -by -
step and make sure the HTML is
correct. The name of the puzzle is
<Insert Puzzle ID>.

<Insert HTML template here>

General Instructions:
- Change the HTML title to the name of

the puzzle
- On each page load , pick a random

number of pairs (between 2-5) and
add more pairs using the pattern
already in the document for the
first two pairs. The number of
pairs should be determined randomly
with each page load.

- Each pair should include two
containers , sized 30x30 pixels each
. Each container will contain an
input grid div and an output grid
div , which the puzzle instructions
will help you define. Do not change
the size of the containers , only

the sizes of the grids inside them.
- Do not modify the CSS for main , pair

, container classes. None of the
classes in the template should be
changed.

- Pick a background color for all the
grids , which should be black for
60% of puzzles

Instructions for puzzle <Insert Puzzle
ID>:

<Insert Puzzle Description >

Warnings:
- Do not use a canvas , because the

output will be blurry.
- Make sure your script does not cause

an infinite loop or cause the page
to crash when the HTML is loaded.

- Just return the HTML document for
saving in a file.

C ARC-HTML Data Leakage In-
vestigation Results

The 10 puzzles that are both in the 114 Mini-ARC eval-
uation dataset and the ARC-HTML 12x12 training
dataset are: 0becf7df, 00576224, 0c786b71, 03560426,
137f0df0, 17cae0c1, 12eac192, 15696249, 332efdb3,
32e9702f. See Table 3 for performance on these 10
puzzles.

Table 3: Mini-ARC Data Leakage Puzzle Performance
Metric Mini-ARC-12 Mini-ARC-v12

Zero-shot Score 3 (30.0%) 2 (20.0%)
Zero-shot Accuracy 93.0% 91.1%
Zero-shot Closeness 5 (50.0%) 3 (30.0%)

TTT Score 4 (40.0%) 3 (30.0%)
TTT Accuracy 91.2% 94.7%
TTT Closeness 5 (50.0%) 5 (50.0%)

TTT + Refined Score 4 (40.0%) 3 (30.0%)
TTT + Refined Accuracy 91.7% 94.9%
TTT + Refined Closeness 5 (50.0%) 5 (50.0%)
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